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Contact Information

» Burton Ma
Lassonde 2046

» EECS4421/5324
lectures Monday, VWWednesday, Friday 1:30-2:30PM (SLH C)
Lab | Thursday 12:30-2:30, Prism 1004
Lab 2 Thursday 2:30-4:30, Prism 1004
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General Course Information

» introduces the basic concepts of robotic manipulators and
autonomous systems.After a review of some fundamental
mathematics the course examines the mechanics and
dynamics of robot arms, mobile robots, their sensors and
algorithms for controlling them.



Textbook

» no required textbook

» first 6 weeks of course uses notation consistent with Robot
Modeling and Control by MW Spong, S Hutchinson, M
Vidyasagar



Assessment

» labs/assignments 6 x 5%
» midterm, 30%
» exam, 40%



Introduction to manipulator kinematics




Robotic Manipulators

» a robotic manipulator is a kinematic chain

i.e.an assembly of pairs of rigid bodies that can move respect to one
another via a mechanical constraint

» the rigid bodies are called links

» the mechanical constraints are called joints
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A150 Robotic Arm

JOINT 3
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JOINT ) %‘%Z%
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Joints

» most manipulator joints are one of two types

I, revolute (or rotary)

like a hinge

2. prismatic (or linear)

like a piston

» our convention: joint | connects link I — 1 to link I

when joint I is actuated, link I moves
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Joint Variables

» revolute and prismatic joints are one degree of freedom
(DOF) joints; thus, they can be described using a single
numeric value called a joint variable

» (@ :joint variable for joint I
I.  revolute

0 = & :angle of rotation of link I relative to link 1 — 1
2. prismatic

q; = d; : displacement of link I relative to link 1 - 1
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Revolute Joint Variable

» revolute
like a hinge
allows relative rotation about a fixed axis between two links

axis of rotation is the z axis by convention

» joint variable ¢; = & : angle of rotation of link I relative to
link 1-1

link 1—1

joint I

I Symbolic Representation of Manipulators



Prismatic Joint Variable

»  prismatic
like a piston

allows relative translation along a fixed axis between two links

axis of translation is the z axis by convention

joint variable ¢; = d; : displacement of link I relative to link 1 —1

link 1—1 link i

d;

joint I
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Common Manipulator Arrangments

» most industrial manipulators have six or fewer joints
the first three joints are the arm
the remaining joints are the wrist
» it is common to describe such manipulators using the joints of
the arm
R: revolute joint

P: prismatic joint
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Articulated Manipulator

» RRR (first three joints are all revolute)

» joint axes

Z, - waist

Z, : shoulder (perpendicular to z,) 2,
Z, : elbow (parallel to z,) Zy Zy

shoulder

forearm

elbow
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Spherical Manipulator
» RRP

» Stanford arm

shoulder

o

>

|5 Common Manipulator Arrangements



SCARA Manipulator

» RRP

» Selective Compliant Articulated Robot for Assembly

(3

Common Manipulator Arrangements




Parallel Robots

» all of the preceding examples are examples of serial chains
base (link 0) is connected to link | by a joint
link | is connected to link 2 by a joint

link 2 is connected to link 3 by a joint ...and so on

» a parallel robot is formed by connecting two or more serial
chains

|7 Parallel Robots



Forward Kinematics

» given the joint variables and dimensions of the links what is
the position and orientation of the end effector?

|8 Forward Kinematics



Forward Kinematics

» choose the base coordinate frame of the robot

we want (X, Y) to be expressed in this frame

X y)?
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Forward Kinematics
» notice that link 1 moves in a circle centered on the base frame

origin

X y)?

YOA

Py
.
.

.
v
.
‘I

Ps 5 (a,cos 6,,a;sin &)
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Forward Kinematics

» choose a coordinate frame with origin located on joint 2 with
the same orientation as the base frame

X y)?

(a,cos 6,,a;sin &)

21 Forward Kinematics



Forward Kinematics

» notice that link 2 moves in a circle centered on frame 1

X y)?

K\
(&, cos (6, + 6)),
a, sin (6, + 6,))
o0 A~ e
¢ =
a, / X,
¢ ,Y 91) (a;cos 6,,a;sin &)
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Forward Kinematics

» because the base frame and frame 1 have the same
orientation, we can sum the coordinates to find the position

of the end effector in the base frame (3, cos 6, +a, cos (6, + &),
a,sin 6, +a,sin (6, +6,))

y;
(&, cos (0, + 6y,
a,sin (6, + 6,))
g AN e
¢ =
a, / X,
¢ ,Y 91) (a;cos 6,,a;sin &)
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Forward Kinematics

» we also want the orientation of frame 2 with respect to the
base frame

X, and Y, expressed in terms Y2
of Xy and y,

YOA

Py
.
v®

.
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Forward Kinematics

» without proof | claim:

X, = (cos (6, + 6)),
sin (6, + 6,) )

Y, = (-sin (6, + 6,),
cos (6, +6,))

YOA
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Y,

.

.
.
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Forward Kinematics

» find (x,y), x,,and y, expressed in frame 0

YOA

26



Forward Kinematics

» find (x,y), x,,and y, expressed in frame 0
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Inverse Kinematics

» given the position (and possibly
the orientation) of the end
effector, and the dimensions
of the links, what are the joint
variables?

YOA
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Inverse Kinematics

» harder than forward kinematics because there is often more
than one possible solution

(X'Y)

YOA
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Inverse Kinematics

law of cosines

b’ =a’+a’ -2aa,cos(r—6,)=x>+Yy’

(X'Y)
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Inverse Kinematics

X°+y’—-a’—a;

2a,a,

—cos(r—06,) =

and we have the trigonometric identity
—cos(r —6,) =cos(6,)

therefore,

cosd, = aa
1772

We could take the inverse cosine, but this gives only one of the two solutions.
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Inverse Kinematics

Instead, use the two trigonometric identities:

. sin &
sin” @+cos’ 6, =1 tan @ =
cos @
to obtain
+./1-C?
0, = tan™ :
2

which yields both solutions for &, . In many programming languages you would use the
four quadrant inverse tangent function atan?2

c2 = (X*x + y*y — al*al — a2*a2) / (2*al*a2);
s2 = sqrt(1l — c2*c2);

theta2l = atan2(s2, c2);

theta22 = atan2(-s2, c2);
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Inverse Kinematics

» Exercise for the student: show that

. 4 a,smnéd
6, = tan” Y1 tan™ - -
X a, +a,cosd,
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Spatial Descriptions

34




Points and Vectors

» point :a location in space

» vector : magnitude (length) and direction between two points
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Coordinate Frames

» choosing a frame (a point and two perpendicular vectors of
unit length) allows us to assign coordinates

=l sl 3 o 10 93

- [°)
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Coordinate Frames

» the coordinates change depending on the choice of frame

<
|l
O
|
o
|l
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Dot Product Mobix o, — Swih s &

Cinme otk
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Vector Projection and Rejection

u
T rejection’of ufromv _ﬂv
6 | V-V
> >
! Vv
projection of u on v
u-v ‘)u‘Mwé C o holess® ulest Ml 9
Vv [ N I
e " ihes ' T
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Translation

» suppose we are given 0, expressed in {0}

0 =

40



Translation 1

L,

o )

» the location of {1} expressed in {0}

<2<>
2

3] o] [3
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Translation 1

I, the translation vector d} can be interpreted as the location
of frame {j} expressed in frame {1}
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Translation 2

)’;nt expresse

in frame {1}

» p' expressed in {0}
o
i -
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Translation 2

2. the translation vector d} can be interpreted as a coordinate
transformation of a point from frame {j} to frame {1}

44



Translation 3

No
| |l
0
| o
c?<>

» 0" expressed in {0}

qO:d -|—pO:

L
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Translation 3

3. the translation vector ¢ can be interpreted as an operator
that takes a point and moves it to a new point in the same
frame
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Rotation

» suppose that frame {1} is rotated relative to frame {0}
(6 pchov lkk

N
Aoy
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Rotation 1

» the orientation of frame {1} expressed in {0}

Yo
Yi A
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Rotation 1

I, the rotation matrix R} can be interpreted as the orientation
of frame {j} expressed in frame {1}
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Rotation 2 R RO

» p' expressed in {0} 0

_ A0 NI
1 1 Y- ' LTI I 4
A @ = _ [ - §irD
Yo ¥ 1 - [M 1‘( )
A - = 3\/\6
Yi . '} N
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-— = ‘
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Y W,
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Rotation 2

2. the rotation matrix R} can be interpreted as a coordinate
transformation of a point from frame {j} to frame {1}
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Rotation 3

» 0" expressed in {0}

0’ =R p° :{cosé’
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Rotation 3

3. the rotation matrix R can be interpreted as an operator
that takes a point and moves it to a new point in the same
frame
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Properties of Rotation Matrices

» RT=R1 ~— 50\){@1 vé & rvH’iow—wmaJ\'.x s i3 Han Spose
» the columns of R are mutually orthogonal

» each column of R is a unit vector

» det R=1 (the determinant is equal to 1)
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Rotation and Translation
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Rotations in 3D

56
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Rotations
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Properties of Rotation Matrices

» RT=R-!

» the columns of R are mutually orthogonal
» each column of R is a unit vector

» det R=1 (the determinant is equal to 1)

58



Rotations in 3D
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Rotation About z-axis

A 0
+'ve rotation <>/ (,
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Rotation About x-axis
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Rotation About y-axis

¥
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Relative Orientation Example
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Successive Rotations in Moving Frames

I. Suppose you perform a rotation in frame {0} to obtain {I}.

2. Then you perform a rotation in frame {1} to obtain {2}.

What is the orientation of {2} relative to {0}?
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Successive Rotations in a Fixed Frame

I. Suppose you perform a rotation in frame {0} to obtain {I}.
2. Then you rotate {1} in frame {0} to obtain {2}.

What is the orientation of {2} relative to {0}?
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Composition of Rotations

. Given a fixed frame {0} and a current frame {I} and R’

if {2} is obtained by a rotation R in the current frame {1} then use
postmulitplication to obtain:

R=R, and R’)=R|R;
2. Given a fixed frame {0} and a frame {l} and

if {2} is obtained by a rotation R in the fixed frame {0} then use
premultiplication to obtain:

R’=RR’
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Rotation About a Unit Axis ?0%(,«.; /IL\me He
20 @7”7!/\

ok C, =cosd

K / > Yo S, =siné
/ V, =1-cost

KV, +Co Kk, —k,s, kK v, +ks,

X

2
kK, v, +K,S, K,Vy +Cy k. k,v,—K,s,

2
KK, vy =K,y KKk, v, +K,S, KV, +C,
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Rigid Body Transformations
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Homogeneous Representation

» translation represented by a vector d

vector addition
» rotation represented by a matrix R

matrix-matrix and matrix-vector multiplication

» convenient to have a uniform representation of translation
and rotation
obviously vector addition will not work for rotation

can we use matrix multiplication to represent translation?
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Homogeneous Representation

» consider moving a point p by a translation vector d

p+d=

0 +0
0, +0

0, +0

X

L

0 +0
0, +C

0, +0

!

P thpy + g |

not possible as matrix-vector multiplication always leaves the origin unchanged
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Homogeneous Representation

» consider an augmented vector p\b\and an augmented matrix D

. —_ \0
G Ip] Y1 0 0Yd} e
Mo“)”‘\gﬁ:w " peckor a
N @} 0, @0 1 0d,
M " p 0 0 1)d
‘ o dv) Z
hov
'I‘MQZN* 000 1
10 0 d[p] [p+d] 7 ‘“”“9\‘1‘("
5 (01 0 d,|p,| [P+d, \07
=l 01 d, {p,| |p,+d |
0 0 0 S
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Homogeneous Representation

» the augmented form of a rotation matrix R;;
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Rigid Body Transformations in 3D

73



Rigid Body Transformations in 3D

» suppose {1} is a rotated and translated relative to {0}

» what is the pose (the orientation and position) of {1}
expressed in {0} ?

T0=?

¥

10}
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Rigid Body Transformations in 3D

» suppose we use the moving frame interpretation (postmultiply
transformation matrices)

translate in {0} to get {0’} D(())'
and then rotate in {0’} to get {1} .,@ _ »)/“’ )
107}
d
105
107}
d s

Step | {0}

Step 2
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Rigid Body Transformations in 3D

» suppose we use the fixed frame interpretation (premultiply
transformation matrices)

rotate in {0} to get {0’} R 5
and then translate in {0} in to get {1} DR —= T,
10}
{07} d (1
Step | {0}

Step 2 {07
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Rigid Body Transformations in 3D

» both interpretations yield the same transformation

T’=DR
10 0 [ I 1 0]
|01 0 |d R, 0
001 | ||| |0
000 1) 000 1
— R3X3 d
000 1
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Homogeneous Representation

» every rigid-body transformation can be represented as a
rotation followed by a translation in the same frame

as a 4x4 matrix

R d
000 1

where R is a 3x3 rotation matrix and d is a 3x| translation vector
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Homogeneous Representation

» in some frame |

points
- -
Pi _ p
_— 1 —
vectors

Vi:V /\/B'eC&UX/ qom ijr 4‘&/\3/{&’
- o e [R 0 L

0 l
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Inverse Transformation

» the inverse of a transformation undoes the original
transformation

if
- R d] /)’ _—
T = g
000 1 s ’
then
_ _ —I -1
T T _
L[ RTRT T =TT
0 0 O | - -
i _ _i?
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Transform Equations

10}

3

8l



Transform Equations

» give expressions for:
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Transform Equations
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Transform Equations

» how can you find

T? — ﬂ’{)"eﬂcz fRLvN V(ro/mi'
TD = e e rbbe b okt (v Gliade)

T§ — ?Mgé Mr/qy.eu ‘J(,Fv( wtb (porl(s?cu

(T T
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