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Contact Information

2

 Burton Ma
Lassonde 2046
burton@cse.yorku.ca

 EECS4421/5324
lectures Monday, Wednesday, Friday 1:30-2:30PM (SLH C)
Lab 1 Thursday 12:30-2:30, Prism 1004
Lab 2 Thursday 2:30-4:30, Prism 1004

 www.eecs.yorku.ca/course/4421
(web site not complete yet)



General Course Information

3

 introduces the basic concepts of robotic manipulators and 
autonomous systems. After a review of some fundamental 
mathematics the course examines the mechanics and 
dynamics of robot arms, mobile robots, their sensors and 
algorithms for controlling them.



Textbook

4

 no required textbook
 first 6 weeks of course uses notation consistent with Robot 

Modeling and Control by MW Spong, S Hutchinson, M 
Vidyasagar



Assessment

5

 labs/assignments 6 x 5%
 midterm, 30%
 exam, 40%



Introduction to manipulator kinematics
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Robotic Manipulators

7

 a robotic manipulator is a kinematic chain
 i.e. an assembly of pairs of rigid bodies that can move respect to one 

another via a mechanical constraint

 the rigid bodies are called links
 the mechanical constraints are called joints

Symbolic Representation of Manipulators



A150 Robotic Arm

8 Symbolic Representation of Manipulators

link 3
link 2



Joints

9 Symbolic Representation of Manipulators

 most manipulator joints are one of two types
1. revolute (or rotary)
 like a hinge

2. prismatic (or linear)
 like a piston

 our convention: joint i connects link i – 1 to link i
 when joint i is actuated, link i moves



Joint Variables

10 Symbolic Representation of Manipulators

 revolute and prismatic joints are one degree of freedom 
(DOF) joints; thus, they can be described using a single 
numeric value called a joint variable

 qi : joint variable for joint i
1. revolute
 qi = i : angle of rotation of link i relative to link i – 1

2. prismatic
 qi = di : displacement of link i relative to link i – 1



Revolute Joint Variable

11 Symbolic Representation of Manipulators

 revolute
 like a hinge
 allows relative rotation about a fixed axis between two links

 axis of rotation is the z axis by convention

 joint variable qi = i : angle of rotation of link i relative to 
link i – 1

link i – 1

link i

i

joint i



Prismatic Joint Variable

12 Symbolic Representation of Manipulators

 prismatic
 like a piston
 allows relative translation along a fixed axis between two links

 axis of translation is the z axis by convention

 joint variable qi = di : displacement of link i relative to link i – 1

link i – 1 link i

di

joint i



Common Manipulator Arrangments
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 most industrial manipulators have six or fewer joints
 the first three joints are the arm
 the remaining joints are the wrist

 it is common to describe such manipulators using the joints of 
the arm
 R: revolute joint
 P: prismatic joint

Common Manipulator Arrangements



Articulated Manipulator
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 RRR (first three joints are all revolute)
 joint axes
 z0 : waist
 z1 : shoulder (perpendicular to z0)
 z2 : elbow (parallel to z1)

Common Manipulator Arrangements

z0
z1 z2

waist

shoulder

elbow

forearm

1

2 3



Spherical Manipulator
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 RRP
 Stanford arm 

 http://infolab.stanford.edu/pub/voy/museum/pictures/display/robots/IMG_2404ArmFrontPeekingOut.JPG

Common Manipulator Arrangements
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SCARA Manipulator
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 RRP
 Selective Compliant Articulated Robot for Assembly 

 http://www.robots.epson.com/products/g-series.htm

Common Manipulator Arrangements

z0

z1 z2

1

2

d3



Parallel Robots
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 all of the preceding examples are examples of serial chains
 base (link 0) is connected to link 1 by a joint
 link 1 is connected to link 2 by a joint
 link 2 is connected to link 3 by a joint ... and so on

 a parallel robot is formed by connecting two or more serial 
chains
 https://www.youtube.com/watch?v=p1Lrz0gPvOA

Parallel Robots



Forward Kinematics
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 given the joint variables and dimensions of the links what is 
the position and orientation of the end effector?

Forward Kinematics

2
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a2



Forward Kinematics
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 choose the base coordinate frame of the robot
 we want (x, y) to be expressed in this frame

Forward Kinematics
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x0

y0



Forward Kinematics
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 notice that link 1 moves in a circle centered on the base frame 
origin

Forward Kinematics

2

1

a1

a2

(x, y) ?
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( a1 cos 1 , a1 sin 1 )



Forward Kinematics
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 choose a coordinate frame with origin located on joint 2 with 
the same orientation as the base frame

Forward Kinematics
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Forward Kinematics
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 notice that link 2 moves in a circle centered on frame 1

Forward Kinematics

2
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a2

(x, y) ?
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( a1 cos 1 , a1 sin 1 )
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Forward Kinematics
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 because the base frame and frame 1 have the same 
orientation, we can sum the coordinates to find the position 
of the end effector in the base frame

Forward Kinematics

2

1

a1

a2
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( a1 cos 1 , a1 sin 1 )
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( a2 cos (1 + 2),
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a1 sin 1 + a2 sin (1 + 2) )



Forward Kinematics
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 we also want the orientation of frame 2 with respect to the 
base frame
 x2 and y2 expressed in terms

of x0 and y0

Forward Kinematics
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Forward Kinematics
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 without proof I claim:

Forward Kinematics

2

1
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a2

x0

y0
1

x2 = (cos (1 + 2),
sin (1 + 2) )

y2 = (-sin (1 + 2),
cos (1 + 2) )

x2
y2



Forward Kinematics
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 find , ଶ, and ଶ expressed in frame 

d1

x0

y0

2

x2

y2

x1

y1

(x, y) ?



Forward Kinematics
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 find , ଶ, and ଶ expressed in frame 

x0

y0

30°



Inverse Kinematics
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 given the position (and possibly
the orientation) of the end
effector, and the dimensions
of the links, what are the joint
variables?

Inverse Kinematics
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Inverse Kinematics

29

 harder than forward kinematics because there is often more 
than one possible solution

Inverse Kinematics
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Inverse Kinematics
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law of cosines

Inverse Kinematics

2 ?

a1

a2

x0

y0

(x, y)
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Inverse Kinematics

31 Inverse Kinematics
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and we have the trigonometric identity
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therefore,

We could take the inverse cosine, but this gives only one of the two solutions.



Inverse Kinematics

32 Inverse Kinematics

1cossin 2
22  

to obtain

Instead, use the two trigonometric identities:
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which yields both solutions for 2 . In many programming languages you would use the
four quadrant inverse tangent function atan2

c2 = (x*x + y*y – a1*a1 – a2*a2) / (2*a1*a2);
s2 = sqrt(1 – c2*c2);
theta21 = atan2(s2, c2);
theta22 = atan2(-s2, c2);



Inverse Kinematics
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 Exercise for the student: show that

Inverse Kinematics
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Spatial Descriptions

34



Points and Vectors

35

 point : a location in space
 vector : magnitude (length) and direction between two points

p

q
v



Coordinate Frames
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 choosing a frame (a point and two perpendicular vectors of 
unit length) allows us to assign coordinates

0p

0q
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Coordinate Frames
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 the coordinates change depending on the choice of frame
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Dot Product
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 the dot product of two vectors
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Vector Projection and Rejection
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 if u and v are unit vectors (have magnitude equal to 1) then 
the projection becomes

u

v


projection of u on v

rejection of u from v

v
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vu
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Translation
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 suppose we are given o1 expressed in {0}
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0ŷ

0o
 0











0
30

1o



Translation 1
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 the location of {1} expressed in {0}

1̂x

1̂y

1o
 1

0x̂

0ŷ
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Translation 1
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1. the translation vector      can be interpreted as the location 
of frame {j} expressed in frame {i}

i
jd



Translation 2
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 p1 expressed in {0}
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Translation 2
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2. the translation vector      can be interpreted as a coordinate 
transformation of a point from frame {j} to frame {i}

i
jd



Translation 3
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 q0 expressed in {0}
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Translation 3
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3. the translation vector      can be interpreted as an operator 
that takes a point and moves it to a new point in the same 
frame

d



Rotation
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 suppose that frame {1} is rotated relative to frame {0}
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Rotation 1
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 the orientation of frame {1} expressed in {0}
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Rotation 1
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1. the rotation matrix      can be interpreted as the orientation 
of frame {j} expressed in frame {i}

i
jR



Rotation 2
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 p1 expressed in {0}
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Rotation 2
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2. the rotation matrix      can be interpreted as a coordinate 
transformation of a point from frame {j} to frame {i}

i
jR



Rotation 3
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 q0 expressed in {0}

0x̂

0ŷ
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Rotation 3
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3. the rotation matrix      can be interpreted as an operator 
that takes a point and moves it to a new point in the same 
frame

R



Properties of Rotation Matrices
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 RT = R-1

 the columns of R are mutually orthogonal
 each column of R is a unit vector
 det R = 1 (the determinant is equal to 1)



Rotation and Translation

55

1̂x
1̂y

1o
 10x̂

0ŷ
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Rotations in 3D
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Rotations
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Properties of Rotation Matrices
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 RT = R-1

 the columns of R are mutually orthogonal
 each column of R is a unit vector
 det R = 1 (the determinant is equal to 1)



Rotations in 3D
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Rotation About z-axis
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Rotation About x-axis
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Rotation About y-axis

62

0x̂

10 ˆˆ yy 

0ẑ
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Relative Orientation Example
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Successive Rotations in Moving Frames
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1. Suppose you perform a rotation in frame {0} to obtain {1}.
2. Then you perform a rotation in frame {1} to obtain {2}.

What is the orientation of {2} relative to {0}?
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Successive Rotations in a Fixed Frame
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1. Suppose you perform a rotation in frame {0} to obtain {1}.
2. Then you rotate {1} in frame {0} to obtain {2}.

What is the orientation of {2} relative to {0}?
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Composition of Rotations
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1. Given a fixed frame {0} and a current frame {1} and
 if {2} is obtained by a rotation R in the current frame {1} then use 

postmulitplication to obtain:

2. Given a fixed frame {0} and a frame {1} and
 if {2} is obtained by a rotation R in the fixed frame {0} then use 

premultiplication to obtain:
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Rotation About a Unit Axis

67































cvkskvkkskvkk
skvkkcvkskvkk
skvkkskvkkcvk

R

zxzyyzx

xzyyzyx

yzxzyxx

k
2

2

2

,

0x̂

0ŷ
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Rigid Body Transformations
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Homogeneous Representation

69

 translation represented by a vector  d
 vector addition

 rotation represented by a matrix  R
 matrix-matrix and matrix-vector multiplication

 convenient to have a uniform representation of translation 
and rotation
 obviously vector addition will not work for rotation
 can we use matrix multiplication to represent translation?



Homogeneous Representation
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 consider moving a point  p by a translation vector  d
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not possible as matrix-vector multiplication always leaves the origin unchanged



Homogeneous Representation
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 consider an augmented vector ph and an augmented matrix D
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Homogeneous Representation
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 the augmented form of a rotation matrix  R3x3
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Rigid Body Transformations in 3D
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p

0
1d

1
2d{0}
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Rigid Body Transformations in 3D
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 suppose {1} is a rotated and translated relative to {0}
 what is the pose (the orientation and position) of {1}

expressed in {0} ?

d

{0}

{1}

?0
1T



Rigid Body Transformations in 3D
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 suppose we use the moving frame interpretation (postmultiply
transformation matrices)
1. translate in {0} to get {0’}
2. and then rotate in {0’} to get {1}

d

{0}

{1}

0
'0D

d

{0}

{0’}

{0’}

Step 1

Step 2
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0
'0 RD



Rigid Body Transformations in 3D
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 suppose we use the fixed frame interpretation (premultiply
transformation matrices)
1. rotate in {0} to get {0’}
2. and then translate in {0} in to get {1}

d
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R
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Step 1
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RD



Rigid Body Transformations in 3D
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 both interpretations yield the same transformation
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Homogeneous Representation

78

 every rigid-body transformation can be represented as a 
rotation followed by a translation in the same frame
 as a 4x4 matrix

where R is a 3x3 rotation matrix and d is a 3x1 translation vector
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Homogeneous Representation
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 in some frame i
 points

 vectors
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Inverse Transformation
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 the inverse of a transformation undoes the original 
transformation
 if

 then
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Transform Equations
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Transform Equations
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 give expressions for:
0
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3
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Transform Equations
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Transform Equations
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 how can you find
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