CSE4421/5324: Introduction to Robotics

Contact Information

- Burton Ma Lassonde 2046 <u>burton@cse.yorku.ca</u>
- EECS4421/5324

lectures Monday, Wednesday, Friday 1:30-2:30PM (SLH C) Lab I Thursday 12:30-2:30, Prism 1004 Lab 2 Thursday 2:30-4:30, Prism 1004

www.eecs.yorku.ca/course/4421

(web site not complete yet)

General Course Information

introduces the basic concepts of robotic manipulators and autonomous systems. After a review of some fundamental mathematics the course examines the mechanics and dynamics of robot arms, mobile robots, their sensors and algorithms for controlling them.

Textbook

- no required textbook
- first 6 weeks of course uses notation consistent with Robot Modeling and Control by MW Spong, S Hutchinson, M Vidyasagar

Assessment

- labs/assignments 6 x 5%
- midterm, 30%
- exam, 40%

Introduction to manipulator kinematics

Robotic Manipulators

- a robotic manipulator is a kinematic chain
 - i.e. an assembly of pairs of rigid bodies that can move respect to one another via a mechanical constraint
- the rigid bodies are called links
- the mechanical constraints are called joints

A150 Robotic Arm

Joints

- most manipulator joints are one of two types
- I. revolute (or rotary)
 - like a hinge
- 2. prismatic (or linear)
 - like a piston
- our convention: joint *i* connects link i 1 to link *i*
 - when joint i is actuated, link i moves

Joint Variables

- revolute and prismatic joints are one degree of freedom (DOF) joints; thus, they can be described using a single numeric value called a joint variable
- q_i : joint variable for joint i
- I. revolute
 - $q_i = \theta_i$: angle of rotation of link *i* relative to link i 1
- 2. prismatic
 - $q_i = d_i$: displacement of link *i* relative to link *i* 1

Revolute Joint Variable

- revolute
 - like a hinge
 - allows relative rotation about a fixed axis between two links
 - axis of rotation is the z axis by convention
- b joint variable $q_i = \theta_i$: angle of rotation of link *i* relative to link i 1

Prismatic Joint Variable

- prismatic
 - like a piston
 - allows relative translation along a fixed axis between two links
 - \blacktriangleright axis of translation is the *z* axis by convention
 - b joint variable $q_i = d_i$: displacement of link *i* relative to link i 1

Common Manipulator Arrangments

- most industrial manipulators have six or fewer joints
 - the first three joints are the arm
 - the remaining joints are the wrist
- it is common to describe such manipulators using the joints of the arm
 - R: revolute joint
 - P: prismatic joint

Articulated Manipulator

- RRR (first three joints are all revolute)
- joint axes
 - z_0 : waist
 - > z_1 : shoulder (perpendicular to z_0)
 - z_2 : elbow (parallel to z_1)

Spherical Manipulator

- ► RRP
- Stanford arm
 - http://infolab.stanford.edu/pub/voy/museum/pictures/display/robots/IMG_2404ArmFrontPeekingOut.JPG

Common Manipulator Arrangements

SCARA Manipulator

► RRP

Selective Compliant Articulated Robot for Assembly

http://www.robots.epson.com/products/g-series.htm

Parallel Robots

- all of the preceding examples are examples of serial chains
 - base (link 0) is connected to link 1 by a joint
 - link I is connected to link 2 by a joint
 - link 2 is connected to link 3 by a joint ... and so on
- a parallel robot is formed by connecting two or more serial chains
 - https://www.youtube.com/watch?v=plLrz0gPvOA

given the joint variables and dimensions of the links what is the position and orientation of the end effector?

- choose the base coordinate frame of the robot
 - we want (x, y) to be expressed in this frame

notice that link 1 moves in a circle centered on the base frame origin

choose a coordinate frame with origin located on joint 2 with the same orientation as the base frame

notice that link 2 moves in a circle centered on frame 1

• because the base frame and frame 1 have the same orientation, we can sum the coordinates to find the position of the end effector in the base frame $(a_1 \cos \theta_1 + a_2 \cos (\theta_1 + \theta_2),$

we also want the orientation of frame 2 with respect to the base frame

• without proof I claim:

• find $(x, y), x_2$, and y_2 expressed in frame 0

• find $(x, y), x_2$, and y_2 expressed in frame 0

given the position (and possibly the orientation) of the end effector, and the dimensions of the links, what are the joint variables?

*y*₂

 x_2

 harder than forward kinematics because there is often more than one possible solution

law of cosines

$$b^{2} = a_{1}^{2} + a_{2}^{2} - 2a_{1}a_{2}\cos(\pi - \theta_{2}) = x^{2} + y^{2}$$

$$-\cos(\pi - \theta_2) = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2}$$

and we have the trigonometric identity

 $-\cos(\pi - \theta_2) = \cos(\theta_2)$

therefore,

$$\cos\theta_2 = \frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1a_2} = C_2$$

We could take the inverse cosine, but this gives only one of the two solutions.

Instead, use the two trigonometric identities:

$$\sin^2 \theta + \cos^2 \theta_2 = 1$$
 $\tan \theta = \frac{\sin \theta}{\cos \theta}$

to obtain

$$\theta_2 = \tan^{-1} \frac{\pm \sqrt{1 - C_2^2}}{C_2}$$

which yields both solutions for θ_2 . In many programming languages you would use the four quadrant inverse tangent function <code>atan2</code>

```
c2 = (x*x + y*y - a1*a1 - a2*a2) / (2*a1*a2);
s2 = sqrt(1 - c2*c2);
theta21 = atan2(s2, c2);
theta22 = atan2(-s2, c2);
```

Exercise for the student: show that

$$\theta_1 = \tan^{-1}\left(\frac{y}{x}\right) - \tan^{-1}\left(\frac{a_2\sin\theta_2}{a_1 + a_2\cos\theta_2}\right)$$

Spatial Descriptions

Points and Vectors

- point : a location in space
- vector : magnitude (length) and direction between two points

Coordinate Frames

 choosing a frame (a point and two perpendicular vectors of unit length) allows us to assign coordinates

Coordinate Frames

the coordinates change depending on the choice of frame

Vector Projection and Rejection

• suppose we are given o_1 expressed in $\{0\}$

$$o_1^0 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

• the location of $\{1\}$ expressed in $\{0\}$

$$\begin{array}{c}
 d_{1}^{0} = o_{1}^{0} - o_{0}^{0} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
rector from o_{0} to o_{1}

41

1. the translation vector d_j^i can be interpreted as the location of frame $\{j\}$ expressed in frame $\{i\}$

• p^1 expressed in $\{0\}$

2. the translation vector d_j^i can be interpreted as a coordinate transformation of a point from frame $\{j\}$ to frame $\{i\}$

• q^0 expressed in $\{0\}$

$$q^{0} = d + p^{0} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

45

3. the translation vector d can be interpreted as an operator that takes a point and moves it to a new point in the same frame

• suppose that frame $\{1\}$ is rotated relative to frame $\{0\}$

• the orientation of frame $\{1\}$ expressed in $\{0\}$

1. the rotation matrix R_j^i can be interpreted as the orientation of frame $\{j\}$ expressed in frame $\{i\}$

Rotation 2

$$p^{1} = |\hat{x}_{1} + |\hat{y}_{1}$$

$$p^{2} = |\hat{x}_{0} + |\hat{y}_{1} + |\hat{y}_{1}$$

$$p^{2} = |\hat{x}_{0} + |\hat{y}_{1} + |\hat{y}_{1}$$

$$p^{2} = |\hat{x}_{0} + |\hat{y}_{1} +$$

2. the rotation matrix R_j^i can be interpreted as a coordinate transformation of a point from frame $\{j\}$ to frame $\{i\}$

• q^0 expressed in $\{0\}$

$$q^{0} = R p^{0} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

52

3. the rotation matrix R can be interpreted as an operator that takes a point and moves it to a new point in the same frame

Properties of Rotation Matrices

- ▶ $R^T = R^{-1}$ ~ inverse of a rotation matrix is its transpose
- the columns of R are mutually orthogonal
- each column of R is a unit vector
- det R = 1 (the determinant is equal to 1)

Rotation and Translation

Rotations in 3D

$$R_{1}^{0} = \begin{bmatrix} x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\ x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\ x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0} \end{bmatrix} \begin{cases} x_{0} \\ y_{0} \\ y_{1} \\ z_{0} \\ z_{1} \\ z_{0} \\ z_{1} \\ z_{1$$

Properties of Rotation Matrices

 $\triangleright R^T = R^{-1}$

- the columns of R are mutually orthogonal
- each column of R is a unit vector
- det R = 1 (the determinant is equal to 1)

Rotations in 3D

Rotation About z-axis

Rotation About x-axis

Rotation About y-axis

Relative Orientation Example

Successive Rotations in Moving Frames

- I. Suppose you perform a rotation in frame $\{0\}$ to obtain $\{1\}$.
- 2. Then you perform a rotation in frame $\{I\}$ to obtain $\{2\}$.

What is the orientation of $\{2\}$ relative to $\{0\}$?

Successive Rotations in a Fixed Frame

- I. Suppose you perform a rotation in frame {0} to obtain {1}.
- 2. Then you rotate $\{1\}$ in frame $\{0\}$ to obtain $\{2\}$.

What is the orientation of $\{2\}$ relative to $\{0\}$?

Composition of Rotations

- I. Given a fixed frame {0} and a current frame {1} and R_1^0
 - if $\{2\}$ is obtained by a rotation R in the *current frame* $\{1\}$ then use postmulitplication to obtain:

$$R = R_{2}^{1}$$
 and $R_{2}^{0} = R_{1}^{0}R_{2}^{1}$

- 2. Given a fixed frame $\{0\}$ and a frame $\{1\}$ and
 - if $\{2\}$ is obtained by a rotation R in the fixed frame $\{0\}$ then use premultiplication to obtain:

$$R_{2}^{0} = RR_{1}^{0}$$

Rigid Body Transformations

- translation represented by a vector d
 - vector addition
- rotation represented by a matrix R
 - matrix-matrix and matrix-vector multiplication
- convenient to have a uniform representation of translation and rotation
 - obviously vector addition will not work for rotation
 - can we use matrix multiplication to represent translation?

• consider moving a point p by a translation vector d

$$p+d = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \\ d_z \end{bmatrix} = \begin{bmatrix} p_x + d_x \\ p_y + d_y \\ p_z + d_z \end{bmatrix}$$

$$Joarry to equal to the sequel of the$$

not possible as matrix-vector multiplication always leaves the origin unchanged

• consider an augmented vector p_h and an augmented matrix D

• the augmented form of a rotation matrix R_{3x3}

$$R = \begin{bmatrix} R_{3x3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R = \begin{bmatrix} R_{3x3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{x} = \begin{bmatrix} R_{3x3} & 0 & p_{x} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{z} = \begin{bmatrix} R_{3x3} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- suppose $\{1\}$ is a rotated and translated relative to $\{0\}$
- what is the pose (the orientation and position) of $\{1\}$ expressed in $\{0\}$?

 $T_{1}^{0} = ?$

 suppose we use the moving frame interpretation (postmultiply transformation matrices)

 suppose we use the fixed frame interpretation (premultiply transformation matrices)

R

- I. rotate in $\{0\}$ to get $\{0'\}$
- 2. and then translate in $\{0\}$ in to get $\{1\}$ DR

both interpretations yield the same transformation

Homogeneous Representation

- every rigid-body transformation can be represented as a rotation followed by a translation in the same frame
 - ▶ as a 4x4 matrix

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where R is a 3x3 rotation matrix and d is a 3x1 translation vector

Homogeneous Representation

- in some frame *i*
 - points

$$P^{i} = \begin{bmatrix} p^{i} \\ 1 \end{bmatrix}$$

vectors

$$V^{i} = \begin{bmatrix} v^{i} \\ 0 \end{bmatrix} \sim \text{because you can't translate} \\ \text{or vector} \qquad \begin{bmatrix} R & d \\ 0 & i \end{bmatrix} \begin{bmatrix} v \\ 0 \end{bmatrix}$$

Inverse Transformation

 the inverse of a transformation undoes the original transformation

$$T = \begin{bmatrix} R & d \\ 0 & 0 & 0 \end{bmatrix}$$

$$TP = g$$

then

▶ if

$$T^{-1} = \begin{bmatrix} R^T & -R^T d \\ 0 & 0 & 0 \end{bmatrix}$$

$$T = T = T p$$
$$= T p$$
$$= P$$

give expressions for:

$$T_{2}^{0} = T_{1}^{\circ} T_{2}^{\prime} = T_{3}^{\circ} T_{4}^{3} T_{2}^{4}$$
$$T_{4}^{3} = (T_{3}^{\circ})^{-1} T_{1}^{\circ} T_{2}^{\prime} (T_{2}^{4})^{-1}$$
$$= T_{3}^{3} T_{1}^{\circ} T_{1}^{\prime} T_{2}^{\prime} T_{2}^{\prime}$$

how can you find

$$T_{1}^{0} - \text{reference frame of robot}$$

$$T_{2}^{0} - \text{pixe of workspace relative to robot (Via Calibration)}$$

$$T_{3}^{2} - \text{pose of workspace velocities to workspace}$$

$$T_{3}^{1} = \left(\left(\top_{3}^{2}\right)^{-1} \left(\left(\top_{2}^{0}\right)^{-1} \top_{1}^{0}\right)^{-1}\right)$$