
CSE4421/5324: Introduction to Robotics
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Contact Information
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 Burton Ma
Lassonde 2046
burton@cse.yorku.ca

 EECS4421/5324
lectures Monday, Wednesday, Friday 1:30-2:30PM (SLH C)
Lab 1 Thursday 12:30-2:30, Prism 1004
Lab 2 Thursday 2:30-4:30, Prism 1004

 www.eecs.yorku.ca/course/4421
(web site not complete yet)



General Course Information
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 introduces the basic concepts of robotic manipulators and 
autonomous systems. After a review of some fundamental 
mathematics the course examines the mechanics and 
dynamics of robot arms, mobile robots, their sensors and 
algorithms for controlling them.



Textbook
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 no required textbook
 first 6 weeks of course uses notation consistent with Robot 

Modeling and Control by MW Spong, S Hutchinson, M 
Vidyasagar



Assessment

5

 labs/assignments 6 x 5%
 midterm, 30%
 exam, 40%



Introduction to manipulator kinematics
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Robotic Manipulators

7

 a robotic manipulator is a kinematic chain
 i.e. an assembly of pairs of rigid bodies that can move respect to one 

another via a mechanical constraint

 the rigid bodies are called links
 the mechanical constraints are called joints

Symbolic Representation of Manipulators



A150 Robotic Arm

8 Symbolic Representation of Manipulators

link 3
link 2



Joints

9 Symbolic Representation of Manipulators

 most manipulator joints are one of two types
1. revolute (or rotary)
 like a hinge

2. prismatic (or linear)
 like a piston

 our convention: joint i connects link i – 1 to link i
 when joint i is actuated, link i moves



Joint Variables

10 Symbolic Representation of Manipulators

 revolute and prismatic joints are one degree of freedom 
(DOF) joints; thus, they can be described using a single 
numeric value called a joint variable

 qi : joint variable for joint i
1. revolute
 qi = i : angle of rotation of link i relative to link i – 1

2. prismatic
 qi = di : displacement of link i relative to link i – 1



Revolute Joint Variable

11 Symbolic Representation of Manipulators

 revolute
 like a hinge
 allows relative rotation about a fixed axis between two links

 axis of rotation is the z axis by convention

 joint variable qi = i : angle of rotation of link i relative to 
link i – 1

link i – 1

link i

i

joint i



Prismatic Joint Variable

12 Symbolic Representation of Manipulators

 prismatic
 like a piston
 allows relative translation along a fixed axis between two links

 axis of translation is the z axis by convention

 joint variable qi = di : displacement of link i relative to link i – 1

link i – 1 link i

di

joint i



Common Manipulator Arrangments
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 most industrial manipulators have six or fewer joints
 the first three joints are the arm
 the remaining joints are the wrist

 it is common to describe such manipulators using the joints of 
the arm
 R: revolute joint
 P: prismatic joint

Common Manipulator Arrangements



Articulated Manipulator
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 RRR (first three joints are all revolute)
 joint axes
 z0 : waist
 z1 : shoulder (perpendicular to z0)
 z2 : elbow (parallel to z1)

Common Manipulator Arrangements

z0
z1 z2

waist

shoulder

elbow

forearm

1

2 3



Spherical Manipulator
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 RRP
 Stanford arm 

 http://infolab.stanford.edu/pub/voy/museum/pictures/display/robots/IMG_2404ArmFrontPeekingOut.JPG

Common Manipulator Arrangements

z0
z1

z2

waist

shoulder

1

2

d3



SCARA Manipulator
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 RRP
 Selective Compliant Articulated Robot for Assembly 

 http://www.robots.epson.com/products/g-series.htm

Common Manipulator Arrangements

z0

z1 z2

1

2

d3



Parallel Robots
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 all of the preceding examples are examples of serial chains
 base (link 0) is connected to link 1 by a joint
 link 1 is connected to link 2 by a joint
 link 2 is connected to link 3 by a joint ... and so on

 a parallel robot is formed by connecting two or more serial 
chains
 https://www.youtube.com/watch?v=p1Lrz0gPvOA

Parallel Robots



Forward Kinematics
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 given the joint variables and dimensions of the links what is 
the position and orientation of the end effector?

Forward Kinematics

2

1

a1

a2



Forward Kinematics
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 choose the base coordinate frame of the robot
 we want (x, y) to be expressed in this frame

Forward Kinematics

2

1

a1

a2

(x, y) ?

x0

y0



Forward Kinematics
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 notice that link 1 moves in a circle centered on the base frame 
origin

Forward Kinematics

2

1

a1

a2

(x, y) ?

x0

y0

( a1 cos 1 , a1 sin 1 )



Forward Kinematics
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 choose a coordinate frame with origin located on joint 2 with 
the same orientation as the base frame

Forward Kinematics

2

1

a1

a2

(x, y) ?

x0

y0

( a1 cos 1 , a1 sin 1 )

1

x1

y1



Forward Kinematics
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 notice that link 2 moves in a circle centered on frame 1

Forward Kinematics

2

1

a1

a2

(x, y) ?

x0

y0

( a1 cos 1 , a1 sin 1 )

1

x1

y1

( a2 cos (1 + 2),
a2 sin (1 + 2) )



Forward Kinematics
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 because the base frame and frame 1 have the same 
orientation, we can sum the coordinates to find the position 
of the end effector in the base frame

Forward Kinematics

2

1

a1

a2

x0

y0

( a1 cos 1 , a1 sin 1 )

1

x1

y1

( a2 cos (1 + 2),
a2 sin (1 + 2) )

(a1 cos 1 + a2 cos (1 + 2),
a1 sin 1 + a2 sin (1 + 2) )



Forward Kinematics
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 we also want the orientation of frame 2 with respect to the 
base frame
 x2 and y2 expressed in terms

of x0 and y0

Forward Kinematics

2

1

a1

a2

x0

y0
1

x2
y2



Forward Kinematics
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 without proof I claim:

Forward Kinematics

2

1

a1

a2

x0

y0
1

x2 = (cos (1 + 2),
sin (1 + 2) )

y2 = (-sin (1 + 2),
cos (1 + 2) )

x2
y2



Forward Kinematics
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 find , ଶ, and ଶ expressed in frame 

d1

x0

y0

2

x2

y2

x1

y1

(x, y) ?



Forward Kinematics

27

 find , ଶ, and ଶ expressed in frame 

x0

y0

30°



Inverse Kinematics
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 given the position (and possibly
the orientation) of the end
effector, and the dimensions
of the links, what are the joint
variables?

Inverse Kinematics

2 ?

1 ?

a1

a2

x0

y0

x2
y2

(x, y)



Inverse Kinematics
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 harder than forward kinematics because there is often more 
than one possible solution

Inverse Kinematics

a1

a2

x0

y0

(x, y)



Inverse Kinematics
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law of cosines

Inverse Kinematics

2 ?

a1

a2

x0

y0

(x, y)

22
221

2
2

2
1

2 )cos(2 yxaaaab  

b



Inverse Kinematics

31 Inverse Kinematics

21

2
2

2
1

22

2 2
)cos(

aa
aayx 

 

)cos()cos( 22  

and we have the trigonometric identity

2
21

2
2

2
1

22

2 2
cos C

aa
aayx






therefore,

We could take the inverse cosine, but this gives only one of the two solutions.



Inverse Kinematics

32 Inverse Kinematics

1cossin 2
22  

to obtain

Instead, use the two trigonometric identities:




cos
sintan 

2

2
21

2

1
tan

C
C

 

which yields both solutions for 2 . In many programming languages you would use the
four quadrant inverse tangent function atan2

c2 = (x*x + y*y – a1*a1 – a2*a2) / (2*a1*a2);
s2 = sqrt(1 – c2*c2);
theta21 = atan2(s2, c2);
theta22 = atan2(-s2, c2);



Inverse Kinematics
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 Exercise for the student: show that

Inverse Kinematics










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Spatial Descriptions
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Points and Vectors
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 point : a location in space
 vector : magnitude (length) and direction between two points

p

q
v



Coordinate Frames
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 choosing a frame (a point and two perpendicular vectors of 
unit length) allows us to assign coordinates
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0ŷ

0o 0










5.1
20q











5.2
40p



Coordinate Frames
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 the coordinates change depending on the choice of frame
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Dot Product

38

 the dot product of two vectors
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Vector Projection and Rejection
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 if u and v are unit vectors (have magnitude equal to 1) then 
the projection becomes

u

v


projection of u on v

rejection of u from v

v
vv
vu



v
vv
vuu





vvu ˆˆˆ 



Translation
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 suppose we are given o1 expressed in {0}

1̂x

1̂y

1o
 1

0x̂

0ŷ

0o
 0



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
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Translation 1
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 the location of {1} expressed in {0}
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Translation 1
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1. the translation vector      can be interpreted as the location 
of frame {j} expressed in frame {i}

i
jd



Translation 2
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 p1 expressed in {0}
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Translation 2
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2. the translation vector      can be interpreted as a coordinate 
transformation of a point from frame {j} to frame {i}

i
jd



Translation 3
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 q0 expressed in {0}
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Translation 3
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3. the translation vector      can be interpreted as an operator 
that takes a point and moves it to a new point in the same 
frame

d



Rotation
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 suppose that frame {1} is rotated relative to frame {0}

1̂x

1̂y

0x̂

0ŷ

10 oo 


sin

cos



Rotation 1
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 the orientation of frame {1} expressed in {0}

1̂x

1̂y

0x̂

0ŷ

10 oo 



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

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Rotation 1
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1. the rotation matrix      can be interpreted as the orientation 
of frame {j} expressed in frame {i}

i
jR



Rotation 2
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 p1 expressed in {0}
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1̂y
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Rotation 2
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2. the rotation matrix      can be interpreted as a coordinate 
transformation of a point from frame {j} to frame {i}

i
jR



Rotation 3
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 q0 expressed in {0}

0x̂

0ŷ
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Rotation 3
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3. the rotation matrix      can be interpreted as an operator 
that takes a point and moves it to a new point in the same 
frame

R



Properties of Rotation Matrices
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 RT = R-1

 the columns of R are mutually orthogonal
 each column of R is a unit vector
 det R = 1 (the determinant is equal to 1)



Rotation and Translation
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1̂x
1̂y

1o
 10x̂

0ŷ

0o
 0



Rotations in 3D
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









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


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R



Rotations

57



Properties of Rotation Matrices
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 RT = R-1

 the columns of R are mutually orthogonal
 each column of R is a unit vector
 det R = 1 (the determinant is equal to 1)



Rotations in 3D
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
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
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Rotation About z-axis
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0x̂

0ŷ

10 ˆˆ zz 

1̂x

1̂y



+'ve rotation



Rotation About x-axis
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0x̂

0ŷ

0ẑ

1̂x

1̂y



+'ve rotation

1̂z



Rotation About y-axis

62

0x̂

10 ˆˆ yy 

0ẑ

1̂x
 +'ve rotation

1̂z



Relative Orientation Example
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0x̂

10 ˆˆ zy 

0ẑ

1̂x

1̂y

45



Successive Rotations in Moving Frames
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1. Suppose you perform a rotation in frame {0} to obtain {1}.
2. Then you perform a rotation in frame {1} to obtain {2}.

What is the orientation of {2} relative to {0}?

?0
2 R

0x̂

1̂z

1̂x
10 ˆˆ yy 

0ẑ

2x̂

21 ˆˆ zz 
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1̂y

2ŷ
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0ẑ
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0ŷ
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


,
1
2 zRR ,

0
1 yRR 



Successive Rotations in a Fixed Frame
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1. Suppose you perform a rotation in frame {0} to obtain {1}.
2. Then you rotate {1} in frame {0} to obtain {2}.

What is the orientation of {2} relative to {0}?

?0
2 R

0x̂

1̂z

1̂x
10 ˆˆ yy 

0ẑ

1̂x

1̂z

0ŷ
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2ŷ
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0x̂

0ŷ

2ẑ





,zRR,
0
1 yRR 

0ẑ

0x̂



Composition of Rotations
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1. Given a fixed frame {0} and a current frame {1} and
 if {2} is obtained by a rotation R in the current frame {1} then use 

postmulitplication to obtain:

2. Given a fixed frame {0} and a frame {1} and
 if {2} is obtained by a rotation R in the fixed frame {0} then use 

premultiplication to obtain:

0
1R

0
1

0
2 RRR 

1
2

0
1

0
2

1
2 and RRRRR 



Rotation About a Unit Axis
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Rigid Body Transformations

68



Homogeneous Representation

69

 translation represented by a vector  d
 vector addition

 rotation represented by a matrix  R
 matrix-matrix and matrix-vector multiplication

 convenient to have a uniform representation of translation 
and rotation
 obviously vector addition will not work for rotation
 can we use matrix multiplication to represent translation?



Homogeneous Representation
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 consider moving a point  p by a translation vector  d
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
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not possible as matrix-vector multiplication always leaves the origin unchanged



Homogeneous Representation

71

 consider an augmented vector ph and an augmented matrix D
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 the augmented form of a rotation matrix  R3x3
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 suppose {1} is a rotated and translated relative to {0}
 what is the pose (the orientation and position) of {1}

expressed in {0} ?
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 suppose we use the moving frame interpretation (postmultiply
transformation matrices)
1. translate in {0} to get {0’}
2. and then rotate in {0’} to get {1}
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'0D

d
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Rigid Body Transformations in 3D
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 suppose we use the fixed frame interpretation (premultiply
transformation matrices)
1. rotate in {0} to get {0’}
2. and then translate in {0} in to get {1}
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 both interpretations yield the same transformation
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 every rigid-body transformation can be represented as a 
rotation followed by a translation in the same frame
 as a 4x4 matrix

where R is a 3x3 rotation matrix and d is a 3x1 translation vector
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 in some frame i
 points

 vectors
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Inverse Transformation
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 the inverse of a transformation undoes the original 
transformation
 if

 then
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 give expressions for:
0
2T

3
4T
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 how can you find
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